Constrained multiparameter global bifurcation

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BIFURCATION OF PERIODIC SOLUTION FROM AN EQUILIBRIUM POINT IN THE MULTIPARAMETER CASE

We consider the bifurcation of periodic solutions from an equilibrium point of the given equation: x =F(x,?) , where x ? R , ? is a vector of real parameters ? , ? , ... , ? and F:R x R ->R has at least second continuous derivations in variables

متن کامل

Spectral asymptotics and bifurcation for nonlinear multiparameter elliptic eigenvalue problems

This paper is concerned with the nonlinear multiparameter elliptic eigenvalue problem u′′(r) + N − 1 r u′(r) + μu(r)− k ∑ i=1 λifi(u(r)) = 0, 0 < r < 1, u(r) > 0, 0 ≤ r < 1, u′(0) = 0, u(1) = 0, where N ≥ 1, k ∈ N and μ, λi ≥ 0 (1 ≤ i ≤ k) are parameters. The aim of this paper is to study the asymptotic properties of eigencurve μ(λ, α) = μ(λ1, λ2, · · · , λk, α) with emphasis on the phenomenon ...

متن کامل

Global Bifurcation on Time Scales

We consider the structure of the solution set of a nonlinear SturmLiouville boundary value problem defined on a general time scale. Using global bifurcation theory we show that unbounded continua of non-trivial solutions bifurcate from the trivial solution at the eigenvalues of the linearization, and we show that certain nodal properties of the solutions are preserved along these continua. Thes...

متن کامل

bifurcation of periodic solution from an equilibrium point in the multiparameter case

we consider the bifurcation of periodic solutions from an equilibrium point of the given equation: x =f(x,?) , where x ? r , ? is a vector of real parameters ? , ? , ... , ? and f:r x r ->r has at least second continuous derivations in variables

متن کامل

On the Structure of the Set of Bifurcation Points of Periodic Solutions for Multiparameter Hamiltonian Systems

This paper deals with periodic solutions of the Hamilton equation ẋ(t) = J∇xH(x(t), λ), where H ∈ C2,0(R2n × Rk,R) and λ ∈ Rk is a parameter. Theorems on global bifurcation of solutions with periods 2π j , j ∈ N, from a stationary point (x0, λ0) ∈ R2n × Rk are proved. ∇xH(x0, λ0) can be singular. However, it is assumed that the local topological degree of ∇xH(·, λ0) at x0 is nonzero. For system...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 1984

ISSN: 0022-1236

DOI: 10.1016/0022-1236(84)90062-4